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Commentary

The Gulf of Mexico is a very productive fishery, 
comprising the majority of domestic shrimp 
(60%) and oyster (70%) production (Louisiana 
Seafood Promotion & Marketing Board 2010). 
During the BP Deepwater Horizon oil spill, 
> 200 million gallons of oil poured into the 
Gulf of Mexico, followed by 1.8 million gallons 
of dispersants intended to break down the oil 
into droplets (Repanich 2010).

The U.S. Food and Drug Administration 
(FDA) is the agency responsible for deter­
mining seafood safety. In response to the 
oil spill, the FDA, working with the states 
and the National Oceanic and Atmospheric 
Administration (NOAA), initially closed 
approximately 37% of the Gulf of Mexico 
(225,290 km2) to commercial and recrea­
tional fishing (NOAA 2010). Reopening of 
these areas was conducted on a rolling basis, 
using a two-phase testing regime consisting 
of organoleptic testing, in which experts sniff 
pieces of seafood for oil taint, and chemical 
analysis for polycyclic aromatic hydrocarbons 
(PAHs) (FDA 2010a). PAHs are found in 
crude oil and have the potential to accumu­
late in aquatic organisms, presenting a health 
risk via ingestion of contaminated seafood 
(Yender et al. 2002). Crustaceans and mol­
lusks, such as shrimp, crab, and oysters, are 
especially likely to be contaminated because of 
reduced rates of biological clearance of PAHs 
in these species (Law et al. 2002). The FDA 
tested for the presence of 13 PAHs selected 
on the basis of known carcinogenicity or 

other health effects, including stunted growth, 
anemia, and kidney disease. The FDA also 
calculated allowable thresholds [levels of con­
cern (LOCs)] for PAHs in each specific type 
of Gulf seafood.

The FDA allowed most Gulf fisheries to 
reopen during the summer and fall of 2010 
based on measured PAHs in seafood below 
the LOCs, although public confidence in Gulf 
seafood was slow to rebuild (Marcus 2011). 
The adequacy of the policy decision to resume 
commercial fishing hinged on the accuracy of 
FDA’s assumptions in calculating the LOCs 
and on the rigor of the seafood monitoring 
program. By critically evaluating the FDA’s 
risk assessment and monitoring practices, we 
aimed to determine the adequacy of public 
health protection in this particular case and to 
identify any broader improvements that may 
be needed to risk assessment practices and 
food safety determinations at the FDA.

Objectives
We evaluated the degree to which the FDA’s 
procedures for determining the safety of Gulf 
seafood after the BP oil spill (FDA 2010a) 
reflect current risk assessment practices and 
protect vulnerable populations. We focused 
on cancer risk associated with shellfish con­
sumption, calculated revised LOCs designed 
to be protective of vulnerable populations, 
and compared them with the FDA LOCs as 
well as with measured concentrations of PAHs 
in Gulf shellfish.

Discussion
The FDA Gulf seafood risk assessment (FDA 
2010a) contains numerous assumptions that 
are inconsistent with the FDA’s own prior 
practice and with risk assessment guidelines 
produced by other authoritative entities, 
including the National Research Council 
(NRC), the World Health Organization 
(WHO), the U.S. Environmental Protection 
Agency (EPA), and the California EPA. Each 
of these assumptions would tend to result 
in an underestimate of risk for a significant 
fraction of the exposed population. The 
questionable assumptions include six main 
issues: a) high consumer body weight, b) low 
estimates of seafood consumption, c)  fail­
ure to include a cancer risk assessment for 
naphthalene, d)  failure to adjust for early-
life susceptibility to PAHs, e) short exposure 
duration, and f ) high cancer risk benchmarks. 
Taken together, these flaws illustrate a failure 
to incorporate the substantial body of evi­
dence on the increased vulnerability of sub­
populations to contaminants, such as PAHs, 
in seafood.

High consumer body weight. For deriva­
tion of all LOCs, the FDA assumed a body 
weight of 80 kg (176 lb). Although the FDA’s 
body weight assumption is reasonable for 
some segments of the population, close to 
75% of the female population in the United 
States weighs < 80 kg, and the average body 
weight of a 4‑ to 6‑year-old child is 21.6 kg 
(McDowell et al. 2008). In a follow-up risk 
assessment conducted for an additional oil 
spill–related contaminant, the FDA acknowl­
edged that using a lower body weight (60 kg) 
offered greater health protection (Bolger 
2010). The U.S. EPA publishes age group–
specific body weights for use in risk assess­
ments (U.S. EPA 2011), based on the broad 
scientific understanding that children have 
increased susceptibility to ingested contami­
nants because of their high food intake in 
proportion of their body weight (NRC 1993). 
Because acceptable intake of contaminants is 
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calculated as a fraction of body weight, using 
an inflated assumption in a risk assessment is 
systematically underprotective of the entire 
population that weighs below the level used 
in the calculation.

Low estimate of seafood consumption. The 
FDA assumed that each consumer eats a daily 
average of 49, 12, or 13 g of fish, oysters, or 
shrimp/crab, respectively. The FDA derived 
this consumption rate from the 90th per­
centile reported in the 2005–2006 National 
Health and Nutrition Examination Survey 
(NHANES) for nationwide seafood consump­
tion (FDA 2010a). Populations living along 
the Gulf Coast have a rate of seafood con­
sumption higher than the rest of the nation 
(Mahaffey et al. 2009). For example, surveys 
of New Orleans, Louisiana, residents and 
recreational anglers in Louisiana found high-
end consumers reporting shrimp intakes of 
65.1 and 55.5 g/day, respectively (Anderson 
and Rice 1993; Lincoln et al. 2011), which is 
significantly higher than the FDA’s estimate 
of 13 g/day. Federal and international agen­
cies, including the U.S. EPA and the WHO, 
have identified the need to protect high-end 
and subsistence fishing communities from 
contaminants in seafood by accounting for 
increased consumption rates. These agencies 
recommend using local studies and/or the 
95th–97th percentile of national consump­
tion surveys (U.S. EPA 2000; WHO 2008), 
in contrast to the 90th percentile used by the 
FDA. To protect subsistence adult consumers, 
the U.S. EPA recommends fish consumption 
rates ranging from 142.4 g/day (general popu­
lation) to 170 g/day (Native Americans) (U.S. 
EPA 2000), which is 2.9–3.5 times higher 
than the FDA estimate of 49 g/day. Similarly, 
the 95th percentile fish consumption rate 

reported in Seafood Choices: Balancing Benefits 
and Risks (Institute of Medicine 2007) is equal 
to 155 g/day—3.2 times higher than the FDA 
assumption. The FDA also failed to account 
for the possibility that consumers may eat a 
combination of various types of seafood when 
they calculated consumption rates and LOCs 
for shrimp, oysters, crab, and fish separately.

Failure to consider the cancer risk from 
naphthalene. Naphthalene was one of the 
most frequently detected PAHs in Gulf 
seafood tested after the spill and was the most 
prevalent PAH in the oil itself (FDA 2010a; 
FDA, unpublished data). Despite the fact 
that naphthalene poses a health risk due to 
both carcinogenic and noncarcinogenic health 
effects, the FDA established the LOC in Gulf 
seafood based solely on noncancer effects (FDA 
2010a). Naphthalene is listed in the 12th 
Report on Carcinogens [National Toxicology 
Program (NTP) 2011] (which the FDA has 
endorsed) as reasonably anticipated to be a 
human carcinogen based on dose-related rare 
nasal and respiratory neuroblastomas and 
adenomas in male and female rats, and on 
lung tumors in female mice. Inhalation has 
been associated with cancer of the larynx in 
humans, and ingestion was associated with 
human colorectal cancer in one study (NTP 
2011). Naphthalene is also listed by the State 
of California as known to cause cancer, with 
sufficient evidence to determine a cancer 
potency factor of 0.12 per mg/kg-day, which 
defines the relationship between exposures and 
cancer risk [Office of Environmental Health 
Hazard Assessment (OEHHA) 2005]. 

The FDA did not assess whether exposures 
in Gulf seafood could pose an increased risk 
of cancer from naphthalene. Because PAHs 
are a mixture of multiple compounds, small 

exposures to multiple PAHs can add up to 
significant cancer risks. By omitting naph­
thalene from its cancer risk assessment, the 
FDA ignored the potential cumulative effect 
of exposures to multiple carcinogens.

Failure to include early-life vulner-
ability. The FDA conducted a single risk 
assessment for adults and did not evaluate 
potential increased risks to the developing 
fetus or child, yet exposure to PAHs dur­
ing pregnancy causes genetic damage to the 
developing fetus (Harper et al. 1989; Orjuela 
et al. 2010). Most PAHs are lipid soluble and 
therefore cross the placenta (Calabrese 1978; 
Shendrikova and Aleksandrov 1974). PAHs 
have also been observed in human breast milk 
(Del Bubba et al. 2005; Kim et al. 2008). 
Animal studies have found that ingestion 
of PAHs during pregnancy results in much 
greater genetic damage in the fetus than in 
the mother (Harper et al. 1989). Children 
exposed prenatally to PAHs have statistically 
significant increases in DNA aberrations in 
specific chromosomes, low birth weight, and 
intrauterine growth restriction (Choi et al. 
2006; Dejmek et  al. 2000; Orjuela et  al. 
2010; Perera et al. 2003, 2005).

The increased vulnerability of the devel­
oping fetus and child to genotoxins and car­
cinogens has been widely recognized. In March 
2005, the U.S. EPA released the Supplemental 
Guidance for Assessing Susceptibility from Early-
Life Exposure to Carcinogens (U.S. EPA 2005), 
which presented age-dependent adjustment 
factors (ADAFs). ADAFs adjust the slope fac­
tors to account for differences in carcinogen 
potency by age groups, based on data from 
animal studies of cancer potency in early-life 
stages compared with adult animals (U.S. 
EPA 2005). The U.S. EPA methods also use 
different rates of exposure according to age, 
accounting for the relative difference in intake 
between children and adults. The U.S. EPA did 
not include ADAFs for prenatal exposures, but 
did acknowledge that the available data sup­
port increased prenatal susceptibility (U.S. EPA 
2005). In California, the OEHHA, under the 
California EPA, accounts for childhood expo­
sures in its risk assessment methods and pro­
vides an adjustment factor [age sensitivity factor 
(ASF)] for prenatal exposures (OEHHA 2009). 
The FDA did not incorporate any of this infor­
mation into its calculation of the LOCs.

Short exposure duration and less-protec-
tive cancer risk benchmarks. The FDA LOC 
incorporates a duration of exposure of only 
5 years and an acceptable  rate of cancer of 
1 cancer in 100,000 people. However, based 
on prior experience from oil spills, PAHs are 
detectable in shellfish for up to 13 years after 
oil contamination, and there is evidence of 
ongoing DNA damage from PAHs in marine 
life after that time (Bejarano and Michel 2010; 
Thomas et al. 2007). There is considerable 

Table 1. Parameters to estimate cancer risk due to PAHs in Gulf seafood: FDA versus vulnerable-
populations method.

Vulnerable populations

FDA Pregnant womana Infant Childb

Risk scenario Adult Woman Prenatal 0 to < 2 2 to 5 6 to < 12
Acceptable risk level 1 in 100,000 1 in 1,000,000c

Exposure duration (years) 5 10c

Body weight (kg) 80 60d 60e 9.6f 17.4f 31.8f

Consumption rate (g/day)
Fish 49 155g 15.5h 16.9i 84.4g 86.4g

Shrimp 13 44g 4.4h 10.1j 24.0g 24.6g

Crab 13 21g 2.1h 4.7j 11.2g 11.5g 

Oysters 12 18k 1.8h 2.4l 5.8l 10.7l 

Early-life vulnerability adjustment
Childm None NA NA NA 3 3
Pregnant woman/infant/childn None NA 3 13 5 3

NA, not applicable.
aPregnant woman scenario, third trimester to 9.75 years of age. bChild scenario, 2 to < 12 years of age. cValue used in 
Exxon Valdez risk assessment (Bolger and Carrington 1999). dValue used in FDA risk assessment for dispersant chemi-
cals in Gulf seafood (Bolger 2010). ePrenatal dose calculated based on woman’s body weight per OEHHA (2009). fData 
from U.S. EPA (2008). g95th percentile from IOM (2007). hFetal PAH exposure assumed to be 10% of maternal exposure 
based on animal dose studies (Perera et al. 2005). iData from U.S. EPA (2008), high-end fish consumers. jEstimated using 
the U.S. EPA CSEF early-life total fish consumption distribution and consumption rates for 2- to 5-year-old children [see 
Supplemental Material, p. 3 (http://dx.doi.org/10.1289/ehp.1103695)]. kData from Louisiana anglers study (Lincoln et al. 
2011). lData from U.S. EPA (2011). mADAFs (U.S. EPA 2005). nASFs (OEHHA 2009). 
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variation in the half-life of PAHs, depend­
ing on the structure of the compound and 
environmental conditions. However, using an 
average value recommended by the California 
EPA for PAHs in soil (570 days), approxi­
mately 10% of the contamination would be 
expected to remain after 5 years, and < 2% 
would remain after 10 years (OEHHA 2000). 
FDA risk assessments conducted for prior oil 
spills, such as the Exxon Valdez, used more 
conservative and health-protective values for 
these parameters: a 10‑year exposure dura­
tion and an acceptable cancer risk level of 1 in 
1 million (Bolger and Carrington 1999).

Revised risk assessment and LOCs. We 
used published sources to estimate exposure 
scenarios for three populations vulnerable to 
PAH contamination in Gulf Coast seafood: 
a woman (or small man), a pregnant woman 
(prenatal exposure to < 10 years of age), and 
a child (2–12 years of age). See Table 1 and 
Supplemental Material, pp. 2–3 (http://dx.doi.
org/10.1289/ehp.1103695) for a description 
and comparison of the exposure and risk pro­
files. Using the vulnerable population risk pro­
files, the FDA LOC equation (adult scenario), 
and the U.S. EPA/California EPA ADAFs/
ASFs and risk calculation methods (child and 
pregnant woman scenarios), we derived revised 
LOCs for benzo[a]pyrene (BaP), one of the 
most potent PAHs, and for cancer risk from 
naphthalene in individual types of seafood 
and for a combined cumulative shellfish-rich 
diet. Consistent with FDA methods, we used 
toxic equivalencies to translate the LOC for 
BaP to other (non-naphthalene) carcinogenic 
PAHs detected in seafood (see Supplemental 
Material, Table 1).

Recalculating LOCs, including the factors 
omitted by the FDA, resulted in significantly 
lower numbers (Table 2). Most notably, the 
revised LOCs for naphthalene in shellfish 
using the pregnant woman scenario are four 
orders of magnitude smaller than the FDA 
values (FDA 2010a). At the LOCs set by the 
FDA, we calculated cancer risks of 4,094 and 
20,214 per million people for a combined 
high-shellfish diet for the woman and preg­
nant woman scenarios, respectively (Table 3). 
Although the combined high-shellfish diet 
scenario represents the sum of individual 
shellfish consumption rates, it is consistent 
with estimates of high-end shellfish consump­
tion [see Supplemental Material, p. 4 (http://
dx.doi.org/10.1289/ehp.1103695)]. These 
risks greatly exceed the FDA risk threshold of 
1 in 100,000 (or 10 in 1 million) and indicate 
that the FDA LOCs are too high to be pro­
tective of vulnerable subpopulations.

Health risks associated with Gulf Coast 
shellfish tested after the oil spill. Although the 
volume of testing was low, government moni­
toring of PAH levels in Gulf seafood enables a 
rough calculation of the cancer risk associated 

with measured levels of PAHs in Gulf shell­
fish for populations of concern. The FDA 
based the reopening of coastal (state) waters 
to commercial shellfish harvesting on a total 
of 80, 37, and 92 samples of shrimp, oys­
ters, and crab, respectively (FDA 2011). The 
NOAA analyzed an additional 122 shrimp 
samples before reopening offshore (federal) 
waters (NOAA 2011). Subsequently, both the 
FDA and NOAA have conducted follow-up 
testing of seafood collected in reopened Gulf 
waters for shrimp (n = 155), crab (n = 34), 
and oysters (n = 3). 

The NOAA initially used gas chroma­
tography-mass spectrophotometry (GC/
MS) with low detection limits, but the alkyl 
naphthalenes were omitted, thereby under­
estimating total naphthalene concentrations. 
Subsequent NOAA testing and all FDA test­
ing used a more-rapid high-performance liq­
uid chromatography method (HPLC) with 
fluorescence detection, with a higher detection 
limit. We analyzed the data published on the 
FDA and NOAA web sites as of 10 June 2011 
(FDA 2011; NOAA 2011). In addition, the 
Natural Resources Defense Council conducted 
a shrimp-sampling project in Barataria Bay, 
Louisiana, and the Mississippi Sound near Pass 
Christian, Mississippi, in December 2010 using 

the GC/MS analytical method, but includ­
ing alkyl naphthalenes. Our project, although 
covering only two specific locations of concern, 
collected 4–9 samples per 100-mile2 sampling 
grid, greatly exceeding the sampling density the 
FDA reported for state waters.

We used the revised risk assessment meth­
ods to evaluate the levels of carcinogenic PAHs 
detected in shellfish after the oil spill. For the 
seven PAHs with established toxicity equiva­
lents, we calculated total BaP equivalents to 
enable comparison with the LOC and to cal­
culate total cancer risk. Detection frequen­
cies and concentrations of carcinogenic PAHs 
varied between the analytes, types of shell­
fish, testing methods, and agency data sets [see 
Supplemental Material, Table 2 (http://dx.doi.
org/10.1289/ehp.1103695)]. To calculate can­
cer risk at the levels detected in Gulf shellfish, 
we combined results generated using compara­
ble analytical methods (FDA and NOAA data 
sets). To evaluate a worst-case scenario, and 
in light of high analytical limits of detection, 
we calculated cancer risks based on detected 
values and 10‑year exposure duration. (See 
Supplemental Material for more information 
on our data analysis methods.) 

Based on the mean of the detected PAH 
concentrations in shellfish, cancer risks for 

Table 2. Comparison of FDA published LOCs for PAHs in Gulf seafood and revised LOCs calculated for 
vulnerable populations.

Vulnerable populations, revised LOCs (ppb)

PAH, seafood type
FDA LOCs 

(ppb) Womana Childb
Pregnant woman 

(prenatal exposure)c

BaP
Fish 35 0.41 0.10 0.06
Shrimp 132 1.46 0.35 0.17
Crab 132 3.05 0.75 0.36
Oysters 143 3.56 1.06 0.63
Total shellfishd 0.77 0.20 0.10

Naphthalene
Fish 32,700 25.16 6.07 3.76
Shrimp 123,000 88.64 21.33 10.24
Crab 123,000 185.71 45.67 21.96
Oysters 133,000 216.67 64.48 38.31
Total shellfishd 46.99 11.86 5.91

aAdult (FDA equation): LOC = (risk level × body weight × averaging time × unit conversion factor) ÷ (cancer slope factor 
× consumption rate × exposure duration). bChild scenario (OEHHA equation): LOC = risk level ÷ {cancer slope factor × 
[(ADAF2–5 × duration2–5 × consumption2–5) + (ADAF6–12 × duration6–12 × consumption6–12)]}. cPregnant woman scenario 
(OEHHA equation): LOC = risk level ÷ {cancer slope factor × [(ASFprenatal × duration prenatal × consumptionprenatal) + 
(ASF0–2 × duration0–2 × consumption0–2) + (ASF2–5 × duration2–5 × consumption2–5) + (ASF6 to < 10 × duration6 to < 10 × 
consumption6 to < 10)]}. dValues reflect LOCs calculated assuming combined high-end consumption of shrimp, crab, and 
oysters [see Supplemental Material (http://dx.doi.org/10.1289/ehp.1103695)].

Table 3. Cancer risks (excess risk per million people) calculated for vulnerable Gulf Coast populations at 
the LOCs set by the FDA for the Gulf Coast after the BP oil spill.

Scenario Contaminant Fish Shrimp Crab Oysters Total shellfish
Woman BaP equivalents 85 968 462 40 1,470

Naphthalene 1,300 1,388 622 614 2,624
Total 1,385 2,356 1,084 654 4,094

Child BaP equivalents 351 376 176 13 565
Naphthalene 5,389 5,767 2,639 206 8,612
Total 5,740 6,143 2,815 219 9,177

Pregnant woman BaP equivalents 567 784 366 87 1,237
Naphthalene 8,703 12,015 5,602 1,360 18,977
Total 9,270 12,799 5,968 1,447 20,214
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the woman and pregnancy scenarios were 
0.008  and 4.2  in 1  million, respectively, 
from total BaP equivalent concentrations 
and 0.5 and 3.9 in 1 million from naphtha­
lene. Combined cancer risk from all PAHs, 
including naphthalene, was highest for the 
pregnancy scenario at 8.1 [95% confidence 
interval (CI): 4.3, 12.9] in 1 million (Table 4). 
When we compared measured PAH levels 
(using the HPLC method) with the revised 
LOCs in shellfish using the pregnancy sce­
nario, we found that 0–27% exceeded the 
revised LOCs set for consumption of one 
type of shellfish (shrimp, crab, or oysters) 
and 17–55% exceeded the LOC for con­
sumption of combined shellfish types. In 
contrast, a much smaller number of shrimp 
samples (2–8%) had PAH concentrations 
that exceeded the revised cumulative expo­
sure LOCs for the adult woman scenario 
[see Supplemental Material, Table 3 (http://
dx.doi.org/10.1289/ehp.1103695)]. Levels of 
naphthalene and BaP equivalents measured in 
our pilot shrimp-sampling project were lower 
than values reported using the HPLC method 
in the FDA and NOAA data sets, and only 
1 of 13 samples exceeded any of the relevant 
LOCs (see Supplemental Material, Table 3). 
Notably, using revised risk calculations and 
the pregnancy scenario, the revised LOCs for 
BaP in shrimp and total shellfish are below 
the limit of detection for BaP using the HPLC 
method (0.39 ppb). The LOC for naphthalene 
in shrimp for the pregnant woman scenario is 
below the limit of quantification of the HPLC 
method (15.0 ppb) (FDA 2010b).

Taken together, these findings demonstrate 
that the FDA’s conclusion that there were 
no risks to Gulf populations from oil spill–
related contaminants in seafood missed some 
exposures of concern, particularly for pregnant 
women who are high-end seafood consumers. 
Additionally, the use of the HPLC-fluorescence 
analytical method, although improving the 
speed of analysis, may have missed low levels of 
PAH contamination of public health relevance 
for vulnerable populations.

Conclusions
Environmental risk assessment requires the 
use of scientifically founded assumptions 
and appropriate default estimates about the 
exposed population, the intensity and duration 
of exposure, and the dose–response relation­
ship. The risk assessment methods used by the 
FDA to set safe exposure levels for Gulf Coast 

seafood after the oil spill do not incorporate 
current best practices and do not protect vul­
nerable populations. The FDA’s conclusions 
about risks from Gulf seafood should be inter­
preted with caution in coastal populations 
with higher rates of seafood consumption and 
in vulnerable populations such as children, 
small adults, and pregnant women. Our analy­
sis demonstrates that a revised approach, using 
standard risk assessment methods, results in 
significantly lower acceptable levels of PAHs in 
seafood and identifies populations that could 
be at risk from contaminants in Gulf Coast 
seafood. Health advisories targeted at high-end 
consumers would better protect vulnerable 
populations such as pregnant women, women 
who may become pregnant, and children. Our 
approach did not address infant exposure to 
PAHs via maternal seafood consumption and 
lactational transfer. The NRC (2008) found 
up to 50‑fold interindividual variability in 
cancer risk and recommends incorporation of 
estimates of uncertainty, as well as population 
risk distributions, into future risk assessments. 
Improved public health protection from con­
taminants in food will require reforming FDA 
risk assessment practices.
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